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We solve analytically the multiple-scattering equations for two-dimensional photonic crystals in the long-
wavelength limit. Different approximations of the electric and magnetic susceptibilities are presented from a
unified pseudopotential point of view. The nature of the so-called plasmon-polariton bands is clarified. Its
frequency as a function of the wire radius is discussed. The corresponding tunable “magnetic surface plasmon”
band is pointed out.
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There has been much interest recently in two-dimensional
�2D� photonic crystals consisting of arrays of metallic or
dielectric cylinders �wires� in an insulating matrix or arrays
of insulating cylinders in a metallic matrix. These include
recent interest in left-handed materials �1� and in plasmonics
�2�. A key issue is the effective susceptibilities ��� and ��� of
the system. To design systems at different frequencies such
as in the infrared range, it is useful to know their values for
different system parameters. Numerical results are not al-
ways readily available because sometimes the bands are
complex. The photonic bands in an array of cylinders can be
understood entirely in terms of the scattering phase shift of
the cylinders. In the pseudopotential idea in electronic struc-
ture calculation, a real potential is replaced by an effective
one so that the same scattering of the electrons is produced.
Similarly effective susceptibilities can be introduced so that
the correct scattering effect for electromagnetic waves is pro-
duced. We examine this idea to derive effective susceptibili-
ties for the cylinder �see Eqs. �8�, �9�, and �18��. For metallic
cylinders, the magnitude of the wave vector inside the metal
is of the order of the inverse skin depth of the metal. When
the skin depth is much less than the radius of the cylinder, we
obtain a dielectric constant of a metallic form where the ef-
fective “plasma frequency” is given by

�p�
2 = −

2c2

R2 ln��R/c�
, �1�

with R being the radius of the cylinder. While the original
analysis �3� for the effective dielectric constant is carried out
for a wire radius less than the skin depth of the metal, the
experiments �4� for the left-handed materials are performed
for wires with radii larger than the skin depth. Our result
provides for an extension of the original analysis. For the
dielectric constant of a composite, there is an additional fac-
tor of the volume fraction of the wires. Except for a different
logarithmic correction, the other factors of our formula are
the same as that of Pendry and co-workers, when the volume
fraction factor is taken into account.

This also clarifies the issue of damping. For frequencies
from 1 to 10 GHz, the imaginary part of the dielectric con-
stant of most metals is about 1000 times larger than the real
part. When the skin depth is much less than the wire radius,
the loss in the metal is only restricted near the surfaces of the

wires and the effective damping is reduced. Indeed, our di-
electric constant depends only on the wavelength and the
wire radius, with no damping. When the effective wave-
length inside the cylinder is less than its radius, we recover
recent effective-medium results by Wu et al. �5� and Hu
et al. �6�.

In this Rapid Communication we further calculate the
photonic band structure of an array of cylinders of radius R
in the long-wavelength limit when the separation between
the wires a is less than the free-space wavelength �=2� /k0.
We solve analytically the multiple-scattering equations in the
long-wavelength limit. We find that the scattering phase
shifts for both the s wave �n=0 partial wave� and the p wave
�n= �1 partial waves� are of the same order of magnitude,
�k0R�2, and need to be considered. These produced two pho-
tonic branches: an “acoustic” mode with a frequency propor-
tional to the wave vector with an effective dielectric constant
��� �Eq. �27�� and a magnetic susceptibility ��� �Eq. �28��
and an “optic” mode with a gap. For negative dielectric con-
stants and narrow cylinders, the “optic” mode corresponds to
a flatband at frequencies close to the surface plasmon reso-
nances, as has been previously discovered numerically. For
negative magnetic susceptibilities, a “magnetic surface plas-
mon” band is found. For the acoustic mode, we found that
��� can be expressed as the arithmetic mean of that of the
medium and an effective dielectric constant of the cylinder
�c�. We now describe our result in detail.

We first describe our “pseudopotential” idea for the effec-
tive dielectric constant of the cylinder. As far as the electro-
magnetic �EM� field outside the cylinder is concerned, the
effect of the cylinder is completely determined by the scat-
tering phase shifts �n for various angular momentum com-
ponents n. They are given, for the E �TM� and H �TE�
modes, respectively, by �7�

tan �n
E =

kiJn��x�Jn�y� − ko�Jn�x�Jn��y�
kiNn��x�Jn�y� − ko�Nn�x�Jn��y�

, �2�

tan �n
H =

kiJn��x�Jn�y� − ko�Jn�x�Jn��y�
kiNn��x�Jn�y� − ko�Nn�x�Jn��y�

. �3�

The subscripts i and o refer to quantities inside and outside
the cylinder, respectively. kj =k0�� j� j�1/2 for j=o and i, �
=�i /�o, �=�i /�o, and x=koR, y=kiR. We first focus on the s
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wave with n=0. For x=koR�1, with J0�x�=1, J0��x�=−x /2,
N0�x�= �2 /��ln x, and N0��x�=2 / ��x�, one has

tan �0
E � −

�x2

4

1 + 2�J�/�yJ�
1 − yJ� ln x/��J�

, �4�

tan �0
H = −

�x2

4

1 + 2�J�/�yJ�
1 − yJ� ln x/��J�

, �5�

where J=J0�y� and J�=J0��y�. If y=kiR is also small, we have

tan �0
E � −

�

4
x2�1 − ��, tan �0

H � −
�

4
x2�1 − �� . �6�

As is expected, when �=1, there is no scattering and
tan �0

E=0. When kiR is not small, one can define effective
susceptibilities so that the same phase shift is produced:

tan �0
E � −

�

4
x2�1 − �E��, tan �0

H � −
�

4
x2�1 − �H� � . �7�

This is the “pseudopotential” idea that we mentioned. From
Eq. �7� we obtain

�E� = −
�J�

yJ

2 + x2 ln x

1 − yJ� ln x/��J�
, �8�

�H� = −
�J�

yJ

2 + x2 ln x

1 − yJ� ln x/��J�
, �9�

for the effective dielectric constant and magnetic susceptibil-
ity. For metallic cylinders, the magnitude of the wave vector
inside the metal, ki, is of the order of the inverse skin depth
of the metal. When the skin depth is much less than the
radius of the cylinder, kiR	1, the second term in the de-
nominator is larger than the first term; assuming the outer
region to be air with �o=�o=1, we obtain an effective di-
electric constant of a metallic form

�E� = 1 −
�p�

2

�2 , �10�

where �P� is given in Eq. �1�.
Equation �8� encompasses other recent results for dielec-

tric rods. If the second term of the denominator is much
smaller than the first term, we recover recent results in �5,6�:
namely,

�E� � −
2J��

JkiR
. �11�

This pseudopotential idea is also implicit in recent results
using cylinders with a high dielectric constant ferroelectric
�8�. Equation �8� extends these results to more general re-
gions of the parameter space.

For �H� , the second term in the denominator is of the order
of ��i /�i�1/2x and is usually smaller than the first term. We
obtain

�H� � −
2J��

JkiR
. �12�

We next investigate the phase shifts for the higher-order
partial waves. In the limit x=koR�1,

tan �n
E = −

��x/2�2n

�n − 1�!n!

�o − n�iJn/�yJn��
�o + n�iJn/�yJn��

, �13�

tan �n
H = −

��x/2�2n

�n − 1�!n!

�o − n�iJn/�yJn��
�o + n�iJn/�yJn��

. �14�

Here Jn=Jn�kiR� and Jn�=Jn��kiR�. When �kiR��1,

tan �n
E = −

��x/2�2n

�n − 1�!n!

�o − �i

�o + �i
,

tan �n
H = −

��x/2�2n

�n − 1�!n!

�o − �i

�o + �i
. �15�

There is recently much interest in “plasmonics” when the
frequency is close to the interface plasmon frequency so that
�=−1. At this frequency �n

H=� /2. Scattering resonances are
exhibited for the TE modes for all n�0. For n=1 the re-
quirement that the same scattering phase shift should be ob-
tained even when kiR is not small provides for the equations
determining the effective susceptibilities:

tan �1
E = −

�x2

4

�o − �E�

�o + �E�
, �16�

tan �1
H = −

�x2

4

�o − �H�

�o + �H�
. �17�

From these we obtain the effective susceptibilities

�E� =
�iJ1

J1�kiR
, �H� =

�iJ1

J1�kiR
. �18�

Similar equations have also been obtained in �5,6� from a
coherent potential approximation. The results here provide a
different interpretation of their results. With the current view,
“plasmonics” phenomena can also be manifested for nonme-
tallic rods if �H� +�o=1 and the same scattering phase shift is
produced.

We next examine a possible generalization of the pseudo-
potential idea to scattering units other than cylinders �or
spheres�. The scattering information is contained in the T
matrix, which, in the angular momentum basis, can be writ-
ten as T=	�n�Tnm�m�. In the long-wavelength limit, the T
matrix becomes T=	�n�Tnm

0 �� ,���m�. Effective tensors � and
� may be obtained if the equations Tnm=Tnm

0 �� ,�� can be
solved.

We now turn to the photonic bands.
We employ the multiple-scattering method, also known as

the Korringa-Kohn-Rostoker �KKR� technique �9�. Denote
the amplitude of the partial scattered wave with angular mo-
mentum n by an. The sum of the scattered waves from all the
other sites becomes an incoming wave at the origin with the
amplitude pn=	nan�S�n−n��, where

S�m� = 	
R�0

eik·RHm�koR�eim
R. �19�
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Note that S does not include the wave from the origin; thus,
the sum does not include the term at R=0. The outgoing
scattered wave at the origin is related to the incoming wave
by the t matrix: an= tnpn. With the definition of pn, we arrive
at the equation det�S�n−n��−�nn� / tn�=0. Here �nn� denotes
the Kronecker � symbol. Since the t matrix is related to the
phase shift by tn=tan �n / �tan �n+ i�, we obtain the KKR
equation

det�A�n − n�� − �nn� cot �n� = 0. �20�

Here the structure factor A�n�= �S�n�−�n0� / i.
In the long-wavelength limit, one can approximate the

sum for S by an integral, which can then be analytically
evaluated �10�. The structure factor becomes

A�n� �
4inein
kkn

ko
n�k2 − ko

2�a2 . �21�

As is discussed above, if the wavelength outside the cylinder
is long and koR�1, tan �n� �koR�2n for n�0, tan �0
� �koR�2. The phase shifts for the s and p waves are of the
same order of magnitude, �koR�2, and need to be considered.
When only the s- and p-wave components are kept, the KKR
equation reduces to

HE = 0, �22�

where

H = 
A�0� − cot �1 A�1� A�2�
A�1�* A�0� − cot �0 A�1�

A�2�* A�1�* A�0� − cot �1
� . �23�

There are two classes of solutions, with either E1=E
−1
*

= �E1�ei
k and E0=E
0
* or E1=−E

−1
* = i�E1�ei
k and E0=0. We

get two possible eigenvalue equations. The first one is given
by

�A�0� − cot �1 + �A�2����A�0� − cot �0� − 2�A�1��2 = 0. �24�

For the second case, we get

A�0� − cot �1 + �A�2�� = 0. �25�

As we show below, the first mode corresponds to an “acous-
tic” branch with a frequency proportional to the wave vector,
enabling an effective-medium description for the system; the
second mode corresponds to a band with a gap. For negative
susceptibilities, this corresponds to a flatband at frequencies
close to the surface plasmon resonances, as has been previ-
ously found numerically �2�.

We discuss the acoustic branch first. Substituting in the
expressions for the phase shifts and the structure factor into
Eq. �24� and after some algebra �11�, we obtain

k2 = k0
2������ , �26�

where

��� = �1 − f��o + f�i�, �27�

��� = �o

�i��1 + f� + �o�1 − f�
�i��1 − f� + �o�1 + f�

, �28�

with �i� and �i� denoting the effective susceptibilities of the
cylinders.

In the static �zero-wave-vector and -frequency� limit, for
the case with the E field along the axis, Eq. �27� reduces to
���= �1− f��o+ f�i, implying that the average dielectric con-
stant is just the arithmetic mean of the dielectric constants of
the components, as is well known �12�.

In multilayer systems, a similar result is obtained �13�. In
that case the effective � is the harmonic mean of the com-
ponents, while the effective dielectric constant is still the
arithmetic mean of that of its components.

We next discuss the “optic” mode. Substituting in the ex-
pressions for the phase shifts and the structure factor A�n�,
the equation for the second optic mode becomes

2�koa�2

�
ln

koa

2��
= 4 − 4f−1�o + �E�

�E� − �o

+ O�k2� �29�

for the E mode and

2�koa�2

�
ln

koa

2��
= 4 − 4f−1�o + �H�

�H� − �o

+ O�k2� �30�

for the H mode. When k approaches zero, ko is not zero. Let
us illustrate the physics by looking at the H mode. The limit
of small f is particularly interesting. In that limit, the fre-
quency is determined by the condition that �o+�H� =0, where
�H� is given in Eq. �18�.

For metallic cylinders with their radii less than the skin
depths, kiR�1, �H� =�i=1−�p

2 /�2, where �p is the plasma
frequency. �o+�i=0 when � is equal to the interface plasmon
resonance, �sp=�p / �1+�o�1/2. For small k, from the above
equation, we see that ��k�=��k=0�+O�fk�. If f is small, the
dispersion is weak and the bands are flat. This flatband has
been observed numerically previously �2�. The present cal-
culation provides for a more direct analytic demonstration of
this result. If kiR is not small, Eq. �18� suggests that even
with insulating cylinders, flat “plasmonic” photonic bands
can still be obtained if the following condition is satisfied:

�iJ1

J1�kiR
= − �o. �31�

Let us next look at the E mode; the condition becomes
�E� /�o=−1. We call this the “magnetic surface plasmon”
mode. Although a lot of interest in plasmonics has been fo-
cused on the condition �H� /�o=−1, the counterpart condition
on � has not been much discussed.

There is another way of thinking of this type of solutions.
As can be seen from Eqs. �2� and �3�, when the susceptibili-
ties of the metal are negative, �o+�m can become zero and
tan �=
. The scattering can go through resonances due to
the interface plasmon. This can lead to flat photonic bands,
as has been observed in previous numerical calculations. In
general, the more rapidly varying the phase shift, the flatter
the band.
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Pokrovsky and Efros �14� have recently investigated the
propagation of EM waves in a periodic array of metallic
cylinders �wires� in the limit �R	1. Our conclusion differs
from theirs. In their work, an expression similar to our S�0�
also appears. However, in their expression, the sum is over
all R whereas the R=0 term is excluded in ours.

In conclusion, in this Rapid Communication we use a
pseudopotential idea to derive effective susceptibilities of
cylinders so as to mimic the scattering phase shifts of the
system. We calculate analytically the long-wavelength limit
photonic band dispersion in a 2D photonic crystal and ex-
plicitly demonstrate the flat “surface plasmon” photonic
bands with small group velocity vg, which are implicitly ex-
ploited in the study of plasmonics. The spatial extent of a
wave packet �x is of the order of vg /��. For subwavelength
localization �x�� where � is the wavelength. We thus ob-
tain the condition ��	vg /�. Because vg is small, the spread

in frequency �� remains small. The corresponding magnetic
surface plasmon bands are demonstrated. This has not been
much discussed before, but can be used in tunable subwave-
length microwave transmission.

At the surface plasmon frequency, the phase shift is equal
to � /2 in the limit when the cylinder radius is small. Our
pseudopotential idea suggests that “plasmonics” effect need
not be restricted to metallic systems at the surface plasmon
frequency. Other systems with the same resonance phase
shift will lead to similar photonic bands to provide subwave-
length transmission and thus can serve as alternative
candidates.
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xi
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kx
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koa2�k2 − ko
2�

�
xi
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2 − 1�
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−1

�−��o−�c� / ��o+�c�, with �c and �c being the effective sus-
ceptibilities of cylinder, we have

u2�1 + ��2�− 2��1�2� −
u

f
�c1 + �1 + ��2��c0� +

c1c0

f2 = 0.
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u�1 + ��2�− 2��1�2� = − 1.
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2 − 1�c1c0.

Inserting the definitions of c0 and c1 yields

k2
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��c + �o + f��o − �c���o
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